通信原理实验

电子信息与计算机国家级实验教学示范中心 ---通信工程专业实验室

实验课程的教学目标

通过采统的理论学习,建立完整的通信采统模型,掌握基带/频带传输原理、过程以及信号时/频域特性,编码、调制、信道、接收原理和采统性能分析。

科学

加深对通信原理相关技术的理解,提高对通信原理中主要技术的应用和实际操作能力,对 所学的基础理论知识的综合应用能力,具备实践创新能力解决通信的复杂工程问题。

技术

课程内容

• 通信原理实验课程概述

• 实验设备功能与操作

●基于USRP+LabVIEW的FM调制解调设计实验要求

●基于LabVIEW的AM调制解调设计实验要求

课前火备:实验室准入规定

根据学校实验室管理制度要求,所有进入实验 室学习、培训、设计竞赛等的同学必须接收实验室 安全培训,并签署<实验室安全承诺书>。希望大家 认真观看视频和承诺书内容,关注实验室安全操作 的规范和要求。

实验室安全介绍

电信学院实验室

通信原理实验课程概述

PS: 尚未入课程群的同学抓紧时间

一、本学期实验课程形式

▶ 《通信原理》理论课程配套

▶ 线上线下混合教学

▶ 线上SPOC:课前预习

课后单元测验期末考核测试

送下实验:课内时间完成五个实验 (教师不再讲述理论,课上辅导答疑) 课外时间完成FM/AM调制解调综合设计实验

▶ 时间分配:如下表

周次	授课内容	学习方式
第9周	通信原理实验概述/SPOC课堂加入	课堂讲授、演示
	SPOC: 通信原理实验概述 SPOC: 基于USRP+LabVIEW的FM调制解调	线上自学+单元测试
第10周	课内实验:基带传输中的码型变换	课内完成
	SPOC: 基带传输中的码型变换	线上自学+单元测试
第11周	课内实验:数字复接技术	课内完成
	SPOC: 数字复接技术	线上自学+单元测试
第12周	课内实验:汉明编译码系统	课内完成
	SPOC: 差错控制-汉明编译码	线上自学+单元测试
第13周	开放设计实验课堂验收 (各班顺序略有区别,具体安排见课表)	课内完成
	线下自主完成FM/AM开放综合设计实验	线下自主
第14周	开放设计实验课堂验收	课内完成
	线下自主完成FM/AM开放综合设计实验	线下自主
第15周	课内实验:数字调制BPSK传输系统	课内完成
	SPOC: 数字调制BPSK传输系统/频谱相关实验	线上自学+单元测试
第16周	课内实验:数字调制BPSK传输系统/频谱测试	课内完成
	SPOC: 各单元测试、在线结课测试	线上考核测试

在线SPOC需要自学的章节列表

实验名称	预习章节	完成任务
第一讲 通信原理实验课概述	1.1-1.2	单元测试
第二讲基于USRP+LabVIEW的FM调制解调	2.1-2.9	单元测试 线下自主开放设计
第四讲 基带传输中的码型变换	4.1-4.7	单元测试
第五讲 数字调制-BPSK传输系统	5. 1-5. 7	单元测试
第七讲 数字复接技术	7.1-7.5	单元测试
第八讲 差错控制-汉明编译码	8.1-8.5	单元测试
		期末线上考核测试

PS:本学期不开设"第三讲语音信号综合设计"以及"第六讲循环码设计" 开设基于LabVIEW的FM/AM调制解调综合设计任务。

	2024-2025学年第一学期 通信原理实验 排课表								
		星期一	星期二	星期三	星期四	星期五			
第9周	第1节 08:00-09:50				周:通信原理实验概述				
	第2节 10:10-12:00		卢: 通信原理实验概述						
	第4节 14:10-16:00	周:通信原理实验概述	李:通信原理实验概述		户:通信原理实验概述				
	第5节 16:20-18:10	宋:通信原理实验概述		宋:通信原理实验概述		周:通信原理实验概述			
	38 6 10 19:00-20:50								
		星期一	星期二	星期三	星期四	星期五			
	第1节				周,基带传输中的码型				
	第2节		卢、莱莱传输中的湿 到						
	10:10-12:00		7: 左问检验中的特年						
第10周	第4节 14:10-16:00	周:盖带传输中的码型	李。盖带传输中的码型		卢: 基带传输中的码型				
	第5节 16:20-18:10	宋: 基带传输中的码型		宋: 基带传输中的码型		周:盖带传输中的码型			
	第6节 19:00-20:50								
		星期一	星期二	星期三	星期四	星期五			
	第1节 08:00-09:50				周:數字复接技术				
	第2节 10:10-12:00		户: 数字复接技术						
第11周	第4节 14:10-16:00	周:数字复接技术	────────────────────────────────────		卢: 数字复接技术				
	第5节 16:20-18:10	宋: 数字复接技术		宋: 数字复接技术		周。数字复接技术			
	第6节 19:00-20:50								
		星期一	星期二	星期三	星期四	星期五			
第12周	第1节 08:00-09:50				周。汉明编译码				
	第2节 10:10-12:00		户: BPSK传输系统1						
	第4节 14:10-16:00	周。汉明编译码	李:汉明编译码		卢: BPSK传输系统1				
	第5节 16:20-18:10	宋: BPSK传输系统1		宋: BPSK传输系统1		周:汉明编译码			
	第6节 19:00-20:50								

		星期一	星期二	星期三	星期四	星期五
	第1节				周、开放李骁骁收	
第13周	08:00-09:50					
	#27 10:10-12:00		户: BPSK传输系统2			
	第4节 14:10-16:00	周: 并放实验验收	苧 :开放实验验收		户: BPSK传输系统2	
	第5节 16:20-18:10	宋: BPSK传输系统2		宋: BPSK传输系统2		周,开放实验验收
	第6节					
	19:00-20:00	星第一	王第 一	ま 第二	是鮮同	星期五
	第1节	<u></u>				<u> </u>
	08:00-09:50				周:并放实验验收	
	第2节 10:10-12:00		卢: 汉明编译码			
第14周	第4节 14:10-16:00	周:并放实验验收	李: 开放实验验收		卢: 汉明编译码	
	第5节 16:20-18:10	宋:汉明编译码		宋:汉明编译码		周。开放实验验收
	第6节 19:00-20:50					
		星期一	星期二	星期三	星期四	星期五
第15周	第1节 08:00-09:50				周: BPSK传输系统1	
	第2节 10:10-12:00		卢。开放实验验收			
	第4节 14:10-16:00	周: BPSK传输系统1	亭: BPSK传输系统1		卢。并放实验验收	
	第5节 16:20-18:10	宋。开放实验验收		朱。并放实验验收		周: BPSK传输系统1
	第6节 19:00-20:50					
		星期一	星期二	星期三	星期四	星期五
第16周	第1节 08:00-09:50				周: BPSK传输系统2	
	第2节 10:10-12:00		卢。开放实验验收			
	第4节 14:10-16:00	周: BPSK传输系统2	李: BPSK传输系统2		卢: 并放实验验收	
	第5节 16:20-18:10	朱: 开放实验验收		宋: 开放实验验收		周: BPSK传输系统1
	第6节 19:00-20:50					

第16周周一到周五开放线上实验测试

三、课内实验要求

- 1、每次实验前,要求在线通过SPOC预习相关实验内容;
- 2、认真阅读教材上实验过程需要注意的问题;
- 3、二人一组,共同完成实验,组成员尽量不变;
- 4、课后完成实验报告,在截止日前提交课程平台,A4电子版,每组1份, 切勿重复提交!(重复提交扣除一定分数)
 - > 实验收获(如:团队合作、创新能力、解决问题的思路方法、不断试错的 工匠精神、在实践过程中体会知行合一/学以致用、对专业的认识、通信 与社会发展等等),小组成员要求每人都写,附在报告中。
 - > 实验报告参考模板及提交时间:见课程平台。
- 5、课内实验原则上不统一安排补做,实验室开放期间可随时自行来补做。 (PS:报告截止日11.30/12.31,截止日期后不再单独收取实验报告)

四、开放综合设计实验要求

1、实验室开放期间(无课内课程时段)可随时来完成;

2、本学期开放实验包括FM调制解调设计实验和AM调制解 调设计实验两部分,从本周开始到16周截止,学生自主安 排时间;

3、所有课内和开放设计实验都要求按小组完成,FM/AM调制解调设计实验需参加课内统一验收;

4、实验室开放期间大家要爱护实验室设备,频谱仪、 USRP、网线等设备用后归还至原位,切勿带出实验室。

四、开放综合设计实验要求

5、实验室开放期间有问题可以找值班老师答疑;

6、开放实验完成后撰写报告并在截止日期12.31日前提交 到课程平台。实验报告的要求同课内实验,但强调设计思 路和过程,遇到的问题及解决方案,实验收获/感想(报 告要求附后);

7、实验报告/设计报告雷同视为抄袭,报告计1分。

五、实验室开放时段

- ◇ 实验室基本开放时间为工作日上班时间
 - 8: 00-12: 00
 - 14: 00-17: 30
- ◇ 午休时间的开放可提前与值班教师协商;
- ◎晚上及周末原则上不开放,有课时段在不打扰课内实验的前提下可在803-2开放实验。

财段	星期一	星期二	星期三	星期四	星期五
8:00-9:50				有课	
10:10-12:00		有课			
午休					
14:10-16:00	有课	有课		有课	
16:20-18:10	有课		有课		有课
19:00-20:50					

六、实验成绩考核评定

总评(5级12段制):

平时成绩和课内实验报告:		40%
FM开放设计实验(验收+报告)	•	20%
AM开放设计实验(验收+报告)	•	20%
SPOC单元测验+线上期末测试:		20%

百分制成绩	100-	89-	84-	80-	77-	74-	70-	67-	64-	6.0	60
	90	85	81	78	75	71	68	65	61	00	以下
五级制成绩	А	A–	В+	В	B-	C+	С	C-	D+	D	F
课程绩点	4.0	3.7	3.3	3.0	2.7	2.3	2.0	1.7	1.3	1.0	0

所有线上单元测验(11月9日开放)和期末测试(16周开放)都截止到12月31日! 课内实验报告的截止日11.30(前两个)/12.31(后三个)!(月底很重要!)

实验设备功能与操作

通信模型不是一成不变的!

近距离传输:模型中可以没有数字调制和解调器;
可靠性要求不高:模型中可以没有信道编译码器;
传输信号没有保密要求:不需要加密器和解密器。

通信原理实验箱

1、语音编码技术:

▶ PAM模块、ADPCM模块、CVSD模块;

2、数字调制技术:

▶ 调制模块、解调模块、D/A模块、A/D模块、DSP+FPGA模块; 3、线路码型变换:

► HDB₃码模块、CMI编码模块、 CMI译码模块;
 4、数字复接技术:

- ▶ 复接模块、解复接模块:
- 5、差错控制技术:

▶ 汉明编码模块、汉明解码模块;

6、电话呼叫处理:

▶ 电话接口模块、DTMF模块、接续控制模块;

ZH7001型通信原理实验系统

• Note: 基于语音电话系统的综合设计实验的电路

实验中需要关注的专业概念

所谓同步是指收发双方在时间上步调一致,故又称定时。 在数字通信中,按照同步的功用分为:载波同步、位同步、 、群同步和网同步。

从实验结果中体会同步 的实现方式及其在通信 中的重要性!

实验中需要关注的专业概念

误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生错误码。

ZH7001 跳线器默认位置状态图

注: 虚线框内字母为测试点 TPX0Y 中的 X

深色的表示插入跳线帽, 白色的表示未插入

注意: 跳线开关的标注 K×01 、SW×01

深色的表示插入跳线帽, 白色的表示未插入

注意: 跳线开关的标注 K×01 、 SW×01

ZH7001 测试孔默认位置状态图

注: 虚线框内字母为测试点 TPX0Y 中的 X

注意:测试孔的标注 TP×01

示波器波形的稳定性和正 确性与参考波形息息相关!

数字双踪示波器

Multi-Instrument Pro 3.0 - <SoundMAX Digital Audio>

In Spectrum Analyzer

频谱分析仪(仪器子菜单)(ALT-I-S)

执行此命令可打开或关闭频谱分析仪。按动仪器条上的"频谱分析仪"键 <u></u>可 实现同样功能。

幅度谱显示参数

F 自动 ▼ X1 ▼A 1 ▼ 无 ▼ 幅度谱 ▼B1 ▼ 无 ▼ FFT 1024 ▼WND 汉宁窗 ▼ 10% ▼

幅度谱显示参数决定了在幅度谱中如何分析和显示采集到的数据。

频率范围(F)有36项选择:自动、1Hz、2Hz、5Hz、10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1kHz、2kHz、5kHz、10kHz、20kHz、25kHz、50kHz、100kHz、200kHz、500kHz、100kHz、200kHz、100Hz、200Hz、500Hz、100Hz、200Hz、500Hz、100Hz、200Hz、500Hz、10GHz、20GHz、50GHz、100GHz。

本软件能根据采样频率按以下公式自动选择频率显示范围:频率显示范围 = 刚好大于或等于[采样频率] / 2 的整数。

频率放大倍数是水平坐标轴的放大倍数。它有 10 项选择: ×1、×2、×5、×10、 ×20、×50、×100、×200、×500、×1000。

频率放大倍数

虚拟频谱仪使用说明

虚拟频谱仪使用说明

当选择"×1"时,显示窗口将以其可视宽度显示整个频率范围。

如果您将频率放大倍数置于大于1的"×N"档,则显示窗口在其可视宽度内只显示整个频率范围的1/N。显示窗口的底部还将出现一个水平滚动条,移动它可滚动显示整个频率范围。

如果您把光标放于水平轴下面,屏幕上将显示出一个放大镜,这时您也可以通过 按动鼠标的左、右键来调节放大倍数。

在幅度谱中,对于垂直坐标轴,有两种显示模式,可通过[设置]>[频谱分析仪 Y 轴刻度]来选择。

基于USRP+LabVIEW的FM调制解调 设计实验要求

基于USRP+LabVIEW的FM调制解调设计

FM调制

无线信道

接收机

发送机

- 实验简介:频率调制 (FM)常用于无线电和电视广播
 。世界各地的FM调频广播电台使用从87.5MHz到
 108MHz为中心频率的信号进行传输,其中每个电台的带宽通常为200kHz。
- 实验目标:进一步学习并练习图形化编程方式;学习 并运用LabVIEW和USRP的基本模块、使用和调试方 法;在直观深入理解调频收音机工作原理的基础上, 培养将具体通信原理知识转化为编程算法的思维模式 、以及图形化编程的能力,感受真实信号。
- 3. 实验任务:完成FM调制、FM解调模块,实现对声音

波形的基于FM调制和解调的发送端和接收端。

实验要求

- I. 依据解决方案,实现系统或模块,在设计实现环节上体现创造性。
- 对设计系统进行功能和性能测试,进行必要的方案改进,要求提交一种调制和解调 方案即可,注意优化收端的音质。

 \sim

名称

- 輵 Calculate Resample Parameters.vi
- 📕 FM_Radio_Spectrum.vit
- 🛋 subCalcResampleParameters.vi
- subComplextoPolarWF.vi
- 🛋 subConfigSoundCard.vi
- isubDifferentiateContinuous.vi
- 輵 subFMDemod.vi
- 輵 subFMMod.vi
- 鵐 subGetSoundFile.vi
- 📕 subReadSoundFile.vi
- 🛋 subRemoveDCBias.vi
- 動 subResampleWF.vi
- 🛋 subSound_Out_16b_mono.vi
- 🛋 subUnwrap Phase Continuous.vi
- 動 subUSRPCon(rx).vi

基于LabVIEW的AM幅度调制

- 1. 实验简介:幅度调制 (AM)是模拟调制方法中的一种,不但在频域中已调波频谱是基带调制信号频谱的线性位移,而且在时域中,已调波包络与调制信号波形呈线性关系。
 2. 实验目标:熟悉图形化编程方式;了解软件
 - LabVIEW的基本模块、使用和调试方法;更直观深入的理解模拟调制中AM的原理和影响因素
 - 实验任务:完成基于LabVIEW
 平台的AM调制和解调程序,并
 调试试用。分析各参数对已调
 信号时域和频域波形的影响。
 要求提供两种调制方案和两种
 解调方案。

开放设计实验报告要求

- 1. 实验目标
- 2. 实验方案与程序设计
 - 对AM/FM调制解调实现的方案选择进行记录,包括:方案设计和方案选择的完整过程;
 - 分别简述调制、解调部分实现方案的设计思路、完整程序截图、调试验证其正确性的前 面板效果截图与说明
- 3. 调试效果与结论分析
 - 对主程序调试效果与分析;能否改进?改进方案设想
- 4. 遇到问题及解决方案
 - 每组组员分别附上程序编写或调试过程中遇到问题时的界面截图,并简述已完成工作、 遇到的问题和解决思路及方案。
- 5. 实验心得
 - 实验收获和建议,包括知识学习掌握、实践创新能力、团队协作、规范意识、探<mark>究精神</mark> 、知行合一等的理解(<mark>建议报告附小组讨论或设计过程的照片</mark>),不限于以上列举角度。

实验进度安排

SPOC在线学习软件无线电基础知识和LabVIEW 编程基础,教师课堂布置实验任务

<u>开放实验(科技大厦806)</u> 课件标注的开放时间

第9周

第13-16周 分班陆续验收,具体个人 验收时段由任课教师确定

基于软件无线电和 LabVIEW的通信实验教程

◆李丞 熊磊 班冬苹 編書

清华大学出版社 http://www.bjtup.com.cn http://www.bjtup.com.cn

◆ 实验形式:2人一组,自由组合 参考资料: 教材、学生版程序 下载地址:课程平台 实验地点: 交大西门科技大厦806实验室 ◆ 开放时间: 9-16周工作日时间, 13-16 周课上进行验收(各班时间不同,注意课 表)

◆ 实验报告:每组一份,12月31日23:59前提 交到课程平台(禁止补交或发送邮箱)。

最后强调一下安全问题:

- ▶ 接入设备电源时注意用电安全,一旦设备出现异常及时切断电源;
- 不要用湿手碰触电路,禁止将液体(饮用水、饮料等)带入实验区,可以放置在左侧墙边的桌子上;
- 实验箱盖不要悬在上面,可放置在桌子下面或靠在桌子旁边,实验结束 后盖上,一对一按箱体箱盖标号匹配;
- 课内实验和开放实验中,实验仪器、测试线、频谱仪取用后一定要放回 原处,收拾好桌面再离开;
- 切勿将实验设备、用品带出实验室,捡拾物品及时上交(24小时全方位 监控);
- ▶ 最后一名离开实验室的同学一定要通知值班老师。

重点强调:大厦不再提供垃圾处理,实验室垃圾箱仅供投放废纸废线类,所有食品包装、饮料包装、食物残渣、水 果皮核、矿泉水瓶一律禁止投放,自行带出实验室!

谢谢大家~

实验室网站: http://eic-center.bjtu.edu.cn/

补充: 课后线上学习资料

软件无线电背景

软件无线电起源

- 这个术语,最早是美军为了解决海湾战争中,美国和多国部队间的协同作战期间,通信的兼容性与互通性上,遇到的通信不畅的棘手问题而提出来的。
- 军用电台一般是根据某种特定用途设计的,功能单一。虽然有些电台基本结构相似,但其信号特点差异很大,例如工作频段、调制方式、波形结构、通信协议、编码方式或加密方式不同。这些差异极大地限制了不同电台之间的互通性,给协同作战带来困难。

软件无线电背景

软件无线电(Software-defined Radio) 定义

1992年5月,在美国通信体系会议上,JoeMitola首次明确提出软件 无线电的概念:一部无线通信机,其通信功能由软件来实现。同样 的硬件,输入不同的软件,就具有不同的通信功能,这样就可以使 不同单位的不同制式的通信机互通。

■ 所谓软件无线电,一种用软件实现物理层连接的无线通信设计。

软件无线电背景

软件无线电优越性

软件无线电系统的基本思想及其优越性

- 多频段、多功能通信能力和很强的灵活性 软件无线电基于一种通用的硬件平台,将通信各种功能的实现完全 由相应软件运行来完成。只需要通过增加软件模块,就可以很容易 地增加新的功能。它可以与其它任何体制电台实现空中接口,进行 不同制式间的通信。
- 系统升级的便捷性与系统功能的可扩充性 由于软件无线电通信系统的功能更多体现在软件上,因此,系统的 升级只需对软件升级即可。显然,它比以往对硬件电路的设计与改 进更加快捷。

软件无线电的应用

NI无线通信测试平台 支持多种通信协议,覆盖最新LTE与 802.11ac测试

嵌入式控制

- 统一平台适合从设计到发布的全过程
- 高性能实时控制器和FPGA
- 高级编程环境对嵌入式技术中无关紧要 的成分进行了抽象化处理

Sachin Katti教授于2011年春季学期在斯坦 福大学开设试点课程,设计完成了完整的通信系 统,同学们感受到了真实的通信信号。

简易软件无线电系统

USRP(Universal Software Radio Peripheral)介绍

USRP是一个灵活的软件无线电平台外设,可以与很多软件配套使用, 比如: GNURadio、Matlab/Simulink、LabVIEW等。只需要通过一根网 线连通USRP与PC,就可以实现一个软件无线电系统。

通用软件无线电外设

USRP实物图

通用软件无线电外设

USRP原理图

通用软件无线电外设

USRP配置参数

USRP的驱动和连接

■ 驱动: 在电脑上安装USRP驱动 "USRP_120"

■ USRP连接: 首先,用网线连接计算机和USRP。然后查找USRP的IP地址。分为两步:

①修改PC的IP地址,使其与USRP的IP地址处于同一网段,但是不同的IP地址,也就是192.168.10.Y,(X≠Y);

②通过驱动来找到USRP的地址,根据以下路 径:开始→所有程序→National Instruments→NI-USRP→NI-USRP Configuration Utility,打开右图所示的 界面,在这一界面中就会在IP Address中看 到USRP的物理地址,然后在LabVIEW的前面 修改其IP地址就可以了。

LabVIEW

LabVIEW软件介绍

- Laboratory Virtual Instrument Engineering Workbench是一种图形化的编程语言,又称为"G"语言。使用这种语言编程时,基本上不写程序代码,取而代之的是流程图。它尽可能利用了技术人员所熟悉的术语、图标和概念,因此,LabVIEW是一个面向最终用户的工具。
- 它可以增强你构建自己的科学和工程系统的能力,提供了实现仪器 编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测 试并实现仪器系统时,可以大大提高工作效率。

LabVIEW的应用

汽车诊断

太阳能电厂控制

UCLA对哥斯达黎加境内的雨 林环境监控

医疗

LabVIEW

LabVIEW软件介绍

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序, 而LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流 向决定了程序的执行顺序。它用图标表示函数,用连线表示数据流 向。例如输出"Hello World"。 LabVIEW编程举例

"Hello World"

LabVIEW编程举例

"Hello World"

LabVIEW编程举例

"Hello World"

LabVIEW

LabVIEW编程初探

所有的LabVIEW应用程序都被称为VI(Virtual Instrument),即虚拟 仪器(VI)。它包括:

- 前面板 (front panel)
- 程序框图(block diagram)
- 图标/连结器(icon/connector)

如果将VI与标准仪器相比较,那么前面板上的东西就是仪器面板上的 东西,而框图上的东西相当于仪器箱内的东西。

LabVIEW编程界面

前面板

前面板:即图形化用户界面,用于设置输入数值和观察输出,模拟真实仪表的面板。前面板由控制、指示和修饰三部分构成。

- 控制:用户设置和修改VI输入量的接口;
- 指示: 显示VI输出数据或图形;
- 修饰:对前面板进行美化、装饰。

LabVIEW编程界面

LabVIEW编程界面

前面板

程序框图

图标/连结器

连线是程序设计中较为复杂的问题。程序框图上的每一个对象都带有 自己的连线端子,连线将构成对象之间的数据通道。连线类似于普通 程序中的变量,因此并非任意两个端子间都可连线。连线数据单向流 动,从源端口向一个或多个目的端口流动。

不同的线型代表不同的数据类型。下面是一些常用数据类型所对应的 线型和颜色:

整型	 	
浮点型	 	
布尔型	 	
字符串	 000000000000000000000000000000000000000	*****************
文件路径	 000000000000000000000000000000000000000	*****

LabVIEW编程界面

LabVIEW

LabVIEW操作选板

LabVIEW 具有多个图形化的操作选板,用于创建和运行程序,集中反映了该软件的功能与特征。这些操作选板可以随意在屏幕上移动,并可以放置在屏幕的任意位置。操纵选板共有三类,它包括:

- 工具选板
- 控制选板
- 函数选板

LabVIEW操作选板的使用

工具选板提供了各种用于创建、修 改和调试VI程序的工具。如果该选 板没有出现,则可以在查看菜单栏 里选择工具选板。

LabVIEW操作选板的使用

该选板用来给前面板设置各种所需的输出 显示对象和输入控制对象。每个图标代表 一类子模板。如果控制模板不显示,可以 在查看菜单里选择控制选板,也可以在前 面板的空白处,点击鼠标右键,以弹出控 制选板。

ο

注意: 只有打开前面板时才能调用该选板

LabVIEW操作选板的使用

函数选板是创建程序框图的工具。 该选板上的每一个顶层图标都表示 一个子选板。若函数选板不出现, 则可以在查看菜单里选择函数选板 ,也可以在程序框图窗口的空白处 点击鼠标右键以弹出功能选板。

LabVIEW

LabVIEW小练习

■ 利用LabVIEW软件描绘出正弦函数频谱。

1_{st} While循环结构

While 循环可以反复执行循环体的程序,直至到达某个边界条件。它 类似于普通编程语言中的 Do 循环和 Repeat-Until 循环。直到条件 端子接收到的布尔值为 FALSE。

For循环用于将某段程序执行指定次数,当程序执行次数与指定次数相同时,For循环停止。

条件结构含有两个或者更多的子程序,执行哪一个取决于与选择端子或 者选择对象的外部接口相连接的某个整数、布尔数、字符串或者标识 的值。必须选择一个默认的条件以处理超出范围的数值,或者直接列 出所有可能的输入数值。

顺序结构用于确保子程序框图 按一定顺序执行,顺序结构的 数据流不同于其它结构的数据 流。所有连线至帧的数据都可 使用,平铺式顺序结构的帧按 照从左至右的顺序执行。每帧 执行完毕后会将数据传递至下 一帧。即帧的输入可能取决于 另一个帧的输出。

5¹移位寄存器(常用于For/While循环中)

- 移位寄存器是将数据从一个循环周期传递到另外一个周期。
- 移位寄存器在程序框图中,用循环边框上相应的一对端子来表示。 右边的端子中存储了一个周期完成后的数据,这些数据在这个周期 完成之后将被转移到左边的端子,赋给下一个周期。

- 利用公式节点可以直接输入一个或者多个复杂的公式,而不用创建 流程图的很多子程序。
- 公式节点的帮助窗口中列出了可供公式节点使用的操作符、函数和 语法规定。一般说来,它与C语言非常相似,大体上一个用C写的独 立的程序块都可能用到公式节点中。但是仍然建议不要在一个公式 节点中写过于复杂的代码程序。

LabVIEW程序调试方法

找出语法错误

如果一个VI程序存在语法错误,运行按钮会变成一个折断的箭头,表 示程序不能被执行。点击它,则LabVIEW弹出错误清单窗口,点击其中 任何一个所列出的错误,则出错的对象或端口就会变成高亮。

设置执行程序高亮

在LabVIEW的工具条上有一个画着灯泡的按钮,这个按钮叫做"高亮执行"按钮。点击这个按钮使它变成高亮形式,再点击运行按钮,VI程序就以较慢的速度运行,没有被执行的代码灰色显示,执行后的代码 高亮显示,并显示数据流线上的数据值。这样,你就可以根据数据的 流动状态跟踪程序的执行

LabVIEW程序调试方法

断点与单步执行

使用断点工具可以在程序的某一地点中止程序执行,用探针或者单步 方式查看数据。使用断点工具时,点击你希望设置或者清除断点的地 方。断点的显示对于节点或者图框表示为红框,对于连线表示为红点 。当VI程序运行到断点被设置处,程序被暂停在将要执行的节点,以 闪烁表示。

可用探针工具来查看当流程图程序流经某一根连接线时的数据值。

LabVIEW网络资源

NI中国: ni.com/china NI官方论坛: http: //forums.ni.com/ni/ 门户网站: http://www.gsdzone.net